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Abstract

The most general potential for complete integrability of three-dimensional
classical and quantum problems is obtained starting from a certain class of two
second-order integrals of motion. We also show that these potentials lead to
separation of variables in both classical and quantum cases.

PACS number: 02.30.Ik

1. Introduction

In a previous article, we have studied three-dimensional integrable systems with axial
symmetry [1]. In the present paper, we consider a class of completely integrable systems
in the three-dimensional Euclidean space by using ellipsoidal coordinates. The proposed
procedure will be valid in the contexts of classical and quantum mechanics as well. In both
cases, one reaches complete integrability and then gets separation of variables. In this sense,
we have an approach opposite to the general method developed by Eisenhart [2] who started
from the problem of separation of variables. Here, we must quote the pioneering systematic
work by Smorodinsky and collaborators [3] on the search for systems allowing for separation
of variables using the group approach (see also [4, 5]).

The problem we have solved here is the following: complete integrability of a three-
dimensional classical problem with the Hamiltonian function H = p2/2m + U(x) requires
finding two new constants of motion. If we assume that these constants of motion have
the form H1 = pig

ik
1 (x)pk/2m + U1(x) and H2 = pig

ik
2 (x)pk/2m + U2(x), i.e., they are of

Hamiltonian form for which the kinetic part is quadratic in momenta, we show that there are
always a class of solutions in ellipsoidal coordinates.

This classical situation has an immediate translation in the quantum case, in which we
show that if the potentials are taken as in the classical case, separation of variables follows.
The final result shows that the three-dimensional system can be reduced to three uncoupled
similar Schrödinger-type equations.
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The classical and quantum approaches presented here are simple, self-contained and give
a complete answer to the proposed problem.

This paper is organized as follows: after the introduction of ellipsoidal coordinates in
section 2, we present our strategy of search for complete integrability for the classical case in
section 3. Thus, we find two second-order integrals of motion in involution with a conventional
Hamiltonian of the form p2/2m + U(x) and among themselves. Section 4 is devoted to the
extensions of the previous results to the quantum case.

2. Ellipsoidal coordinates

Let us assume that a, b and c are three fixed positive numbers and λ,μ and ν are real numbers
such that the following relation holds among them:

λ > −c2 > μ > −b2 > ν > −a2. (1)

This relation determines whether the following equation represents either an ellipsoid:

x2

a2 + λ
+

y2

b2 + λ
+

z2

c2 + λ
= 1, (2)

or a one sheeted hyperboloid:

x2

a2 + μ
+

y2

b2 + μ
+

z2

c2 + μ
= 1, (3)

or a two sheeted hyperboloid:

x2

a2 + ν
+

y2

b2 + ν
+

z2

c2 + ν
= 1. (4)

Note that after relations (1), the sign of the coefficient of z2 in (3) is minus and the signs of
the coefficients of y2 and z2 in (4) are also minus. Solving (2)–(4) in x2, y2 and z2, we obtain:

x2 = (λ + a2)(μ + a2)(ν + a2)

(b2 − a2)(c2 − a2)
, (5)

y2 = (λ + b2)(μ + b2)(ν + b2)

(c2 − b2)(a2 − b2)
(6)

and

z2 = (λ + c2)(μ + c2)(ν + c2)

(a2 − c2)(b2 − c2)
. (7)

Equations (5)–(7) provide a system of ellipsoidal coordinates that are λ,μ and ν. Inversion of
these formulae gives ellipsoidal coordinates in terms of Euclidean coordinates. We can also
obtain the following relations:

A = μ + ν + λ = x2 + y2 + z2 − (a2 + b2 + c2), (8)

B = λμ + λν + μν = (a2b2 + a2c2 + b2c2) − x2(b2 + c2) − y2(a2 + c2) − z2(a2 + b2), (9)

C = μνλ = x2b2c2 + y2a2c2 + z2a2b2 − a2b2c2. (10)

These relations show that the numbers λ,μ and ν are the roots of the following equation:

z3 − Az2 + Bz − C = 0. (11)
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3. Searching for integrability

Next, let us assume that we have a classical system for which the motion is governed by the
following Hamiltonian:

H := 1

2m
p2 + U(x) = 1

2m
pig

ij (x)pj + U(x), gij (x) = δij , (12)

i = 1, 2, 3, where δij is the Kronecker delta. If the system is integrable, two additional
constants of motion here given by H1 and H2 must exist. These constants of motion should
satisfy the following relations:

{H,H1} = {H,H2} = {H1,H2} = 0, (13)

where {·, ·} in (13) denotes Poisson brackets. We shall look for systems such that the remaining
integrals of motion are quadratic in momentum. Thus, a typical ansatz for H1 and H2 could
be

H1 = 1

2m
pig

ik
1 (x)pk + U1(x) (14)

and

H2 = 1

2m
pig

ik
2 (x)pk + U2(x), (15)

where repeated indices indicate sum from 1 to 3. The ‘metrics’ gik
1 and gik

2 as well as the
‘potential terms’ {U,U1, U2} must be found from relations (13). As becomes obvious from
(13), the quadratic terms in H,H1 and H2 should also be in involution. Since potential terms
are in involution by definition, one has to impose the following conditions to provide (13):

0 = {H,H1} = 1

2m

(
pi∂

iU1 + ∂iU1pi − pig
ik
1 ∂kU − gik∂kUpi

)
(16)

0 = {H,H2} = 1

2m

(
pi∂

iU2 + ∂iU2pi − pig
ik
2 ∂kU − gik

2 ∂kUpi

)
(17)

0 = {H1,H2} = 1

2m

(
pig

ik∂kU2 + gik
1 ∂kU1pi − pig

ik
2 ∂kU1 − gik

2 ∂kU1pi

)
, (18)

where again we sum over repeated indices and use the notation

∂i = ∂i = ∂

∂xi

. (19)

The display of repeated terms in (16)–(18) would facilitate the comparison with the quantum
case where the order is important. This notation makes sense as the xi are Cartesian
coordinates. Equations (16)–(18) immediately yield

∂iU1 = gik
1 ∂kU (20)

∂iU2 = gik
2 ∂kU (21)

gik
1 ∂kU2 = gik

2 ∂kU1. (22)

The metrics gik
1 (x) and gik

2 (x) will be fixed using the property of involution of the ‘kinetic
terms’ of H,H1 and H2. For gik

1 (x), this condition gives{
pig

ik
1 (x)pk, p2} = 0, (23)

where the bracket denotes the Poisson bracket. This condition implies that pig
ik
1 (x)pk should

be a quadratic function of the coordinates and therefore, it can be expressed as a linear
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combination of the squares of components Li of the angular momentum and the momentum,
pi . We choose this linear combination to be in the following form:

pig
ik
1 (x)pk := L2 − p2

1(b
2 + c2) − p2

2(a
2 + c2) − p2

3(a
2 + b2), (24)

so that if G1(x) is the matrix whose matrix elements are given by gik
1 (x), we have

G1(x) =
⎛
⎝z2 + y2 − (a2 + c2) −xy −xz

−xy x2 + z2 − (a2 + c2) −xy

−xz −yz x2 + y2 − (a2 + b2)

⎞
⎠ . (25)

Note that matrix (25) is symmetric and therefore diagonalizable. Then, it admits three different
eigenvectors. The eigenvectors and their corresponding eigenvalues are given by

Eλ := (∂xλ, ∂yλ, ∂zλ); μ + ν (26)

Eμ := (∂xμ, ∂yμ, ∂zμ); λ + ν (27)

Eν := (∂xν, ∂yν, ∂zν); λ + μ. (28)

Note that ellipsoidal coordinates depend on (x, y, z) through (8)–(10), so that the partial
derivatives in (26)–(28) make sense. The eigenvectors can be written in explicit form as

∂xλ = 1

�

2

x

[
1

μ + b2

1

ν + c2
− 1

μ + c2

1

ν + b2

]
(29)

∂yλ = 1

�

2

y

[
1

μ + c2

1

ν + a2
− 1

μ + a2

1

ν + c2

]
(30)

∂zλ = 1

�

2

z

[
1

μ + a2

1

ν + b2
− 1

μ + b2

1

ν + a2

]
(31)

∂xμ = 1

�

2

x

[
1

ν + b2

1

λ + c2
− 1

ν + c2

1

λ + b2

]
(32)

∂yμ = 1

�

2

y

[
1

ν + c2

1

λ + a2
− 1

ν + a2

1

λ + c2

]
(33)

∂zμ = 1

�

2

z

[
1

ν + a2

1

λ + b2
− 1

ν + b2

1

λ + a2

]
(34)

∂xν = 1

�

2

x

[
1

λ + b2

1

μ + c2
− 1

λ + c2

1

μ + b2

]
(35)

∂yν = 1

�

2

y

[
1

λ + c2

1

μ + a2
− 1

λ + a2

1

μ + c2

]
(36)

∂zν = 1

�

2

z

[
1

λ + a2

1

μ + b2
− 1

λ + b2

1

μ + a2

]
, (37)

where

� = det

∣∣∣∣∣∣∣∣

1
λ+a2

1
μ+a2

1
ν+a2

1
λ+b2

1
μ+b2

1
ν+b2

1
λ+c2

1
μ+c2

1
ν+c2

∣∣∣∣∣∣∣∣
. (38)
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We can easily check that Eλ,Eμ and Eν are mutually orthogonal, so that

Eλ · Eμ = Eλ · Eν = Eμ · Eν = 0. (39)

We recall that these eigenvectors of G1(x) depend on the coordinates x = (x, y, z).
Our next goal is to obtain the matrix elements gik

2 (x). First, note that the involution
conditions {

pig
ik
2 (x)pk, pig

ik
1 (x)pk

} = {
pig

ik
2 (x)pk, p2} = 0, (40)

mean that pig
ik
2 (x)pk have to be a linear combination of Li

2 and pi
2, i = 1, 2, 3. This linear

combination can be chosen as

pig
ik
2 (x)pk = −(

L2
1a

2 + L2
2b

2 + L2
3c

2) + p2
1b

2c2 + p2
2a

2c2 + p2
3a

2b2, (41)

leading to

gik
2 = (

g2
1

)ik − (λ + μ + ν)gik
1 + (λμ + λν + μν)δik, (42)

where
(
g2

1

)ik
and δik are the ik component of the squared matrix G2

1(x) and the Kronecker
delta, respectively. This allows us to write the matrix G2(x), for which the matrix elements
are gik

2 (x), in the following form:

G2(x) =
⎛
⎝−c2y2 − b2z2 + b2c2 c2xy b2xz

c2xy −c2x2 − a2z2 + a2c2 a2yz

b2xz a2yz −b2x2 − a2y2 + a2b2

⎞
⎠ . (43)

The eigenvectors and their corresponding eigenvalues of G2(x) are given by

Eλ; μν (44)

Eμ; νλ (45)

Eν; λμ. (46)

The vectors Eλ,Eμ and Eν have respective norms given by

‖Eλ‖2 = 4(λ + a2)(λ + b2)(λ + c2)

(λ − μ)(λ − μ)
(47)

‖Eμ‖2 = 4(μ + a2)(μ + b2)(μ + c2)

(μ − ν)(μ − λ)
(48)

‖Eν‖2 = 4(ν + a2)(ν + b2)(ν + c2)

(ν − μ)(ν − λ)
. (49)

After having fixed the ‘kinetic terms’ of H1 and H2, our next step is to obtain the ‘potential
terms’ U(x), U1(x) and U2(x). This can be obtained from equations (20)–(22). For this
purpose, we shall work in ellipsoidal coordinates λ,μ, ν. The relation between the derivatives
with respect to the Cartesian coordinates and the derivatives with respect to the ellipsoidal
coordinates can be expressed as

∂i ≡ ∂i = (∂iλ)∂λ + (∂iμ)∂μ + (∂iν)∂ν. (50)

Then, equation (20) takes the following form in terms of λ,μ, ν:

(∂iλ)∂λU1 + (∂iμ)∂μU1 + (∂iν)∂νU1 = gik
1 (∂kλ)∂λU + gik

1 (∂kμ)∂μU + gik
1 (∂kν)∂νU (51)

5
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(where we have omitted the dependence on x in order to alleviate the notation) and then using
(26)–(28) and the short notation Uλ = ∂λU,Uμ = ∂μU,Uν = ∂νU , we have that

(U1)λEλ + (U1)μEμ + (U1)νEν = UλG1(x)Eλ + UμG1(x)Eμ + UνG1(x)Eν

= (μ + ν)UλEλ + (ν + λ)UμEμ + (μ + λ)UνEν. (52)

The same procedure in (21) and (22) yields respectively:

(U2)λEλ + (U2)μEμ + (U2)νEν = μνUλEλ + νλUμEμ + λμUνEν (53)

and

(μ + ν)(U2)λEλ + (ν + λ)(U1)μEμ + (λ + μ)(U2)νEν

= μλ(U1)λEλ + νλ(U1)μEμ + λμ(U1)μEμ. (54)

The vectors Eλ,Eμ and Eν are orthogonal to each other and hence linearly independent. Thus,
from (52)–(54), we have the following set of nine equations:

∂λ(U1 − (μ + ν)U) = 0; ∂λ(U2 − μνU) = 0; ∂λ((μ + ν)U2 − μνU1) = 0

∂μ(U1 − (ν + λ)U) = 0; ∂μ(U2 − λνU) = 0; ∂μ((λ + ν)U2 − λνU1) = 0 (55)

∂ν(U1 − (μ + λ)U) = 0; ∂ν(U2 − λμU) = 0; ∂ν((λ + μ)U2 − λμU1) = 0.

The general solution of these equations is given by

U = l(λ)

(λ − ν)(λ − μ)
+

m(μ)

(μ − ν)(μ − λ)
+

n(ν)

(ν − μ)(ν − λ)
(56)

U1 = (μ + ν)l(λ)

(λ − ν)(λ − μ)
+

(ν + λ)m(μ)

(μ − ν)(μ − λ)
+

(λ + μ)n(ν)

(ν − μ)(ν − λ)
(57)

U2 = (μν)l(λ)

(λ − ν)(λ − μ)
+

(νλ)m(μ)

(μ − ν)(μ − λ)
+

(λμ)n(ν)

(ν − μ)(ν − λ)
, (58)

where l(λ),m(μ) and n(ν) are arbitrary functions of their arguments. From (56)–(58), we
obtain the following relations:

l(λ) = λ2U − λU1 + U2 (59)

m(μ) = μ2U − μU1 + U2 (60)

n(ν) = ν2U − νU1 + U2. (61)

Equations (56)–(58) give the solution to the posed problem. In addition, the functions

h1 := λ2H − λH1 + H2,

h2 := μ2H − μH1 + H2, (62)

h3 := ν2H − νH1 + H2,

commute with each other, a result which is not trivial since λ,μ and ν all depend on x, and
that will be used later. Note that equations (59)–(62) lead directly to the separation of the
Hamilton–Jacobi equation in the elliptic coordinates λ,μ and ν.

Finally, we would like to mention that some time ago, the case in which the potential U
given in (56) satisfies also the Laplace equation, �U = 0, was considered in the literature [7].

6
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4. Quantum case

Let us discuss the separation of variables in the quantum case. First, we note that although
gik

1 (x) and gik
2 (x) depend on the coordinates, this dependence is quadratic. Matrices

Gi(x), i = 1, 2 are symmetric so that the kinetic terms are Hermitian. These are sufficient
conditions for the kinetic terms in H1 and H2 (see (14) and (15)) are self-adjoint on a proper
domain (in fact, they are essentially self-adjoint on the Schwartz space [6]). Thus, the three
Hamiltonians, H,H1 and H2 are well defined as Hermitian operators in the quantum case.

Then, we are in the position of writing the corresponding Schrödinger equations. For the
kinetic terms, it would be convenient to using the following notation:

� := −∂i∂i (63)

�1 := pig
ik
1 (x)pk = −∂ig

ik
1 (x)∂k (64)

�2 := pig
ik
2 (x)pk = −∂ig

ik
2 (x)∂k. (65)

Then, as we have made in the classical case, we probe a separation of variables in terms of the
ellipsoidal coordinates λ,μ and ν. The common wavefunction of the mutually commuting
operators H,H1 and H2 will be written as ψ(λ,μ, ν) in terms of ellipsoidal coordinates. The
action of the kinetic operator (63) on ψ(λ,μ, ν) gives

�ψ = ∂i[∂iλψλ + ∂iμψμ + ∂iμψμ], (66)

where ψλ,ψμ and ψν denote the derivatives of ψ(λ,μ, ν) with respect to the variables λ,μ

and ν, respectively. We now perform the derivative of the term between brackets in (66).
Taking into account the orthogonality relations (39) and the definitions given in (26–28),
relation (66) yields

�ψ = [(∂iλ)2ψλλ + (�λ)ψλ] + [(∂iμ)2ψμμ + (�μ)ψμ] + [(∂iν)2ψνν + (�ν)ψν]. (67)

Analogously, the action of (64) on ψ gives

�1ψ = ∂ig
ik[∂iλψλ + ∂iμψμ + ∂iνψν]. (68)

Now, we take into account that the eigenvectors of the matrix G1(x) (with entries equal g
ij

1 (x))
and their respective eigenvalues are given by (26)–(28).

Next (see (69)), we give two different forms of writing the eigenvalue equations. In
each row, we give in the left the eigenvalue equation and in the right the same in coordinate
representation. We have

G1Eλ = (μ + ν)Eλ ⇐⇒ gik
1 ∂kλ = (μ + ν)∂iλ

G1Eμ = (λ + ν)Eμ ⇐⇒ gik
1 ∂kμ = (λ + ν)∂iμ (69)

G1Eν = (λ + μ)Eν ⇐⇒ gik
1 ∂kν = (λ + μ)∂iν.

Using relations (69) in (68), we get

�1ψ = ∂i[(μ + ν)∂i(λψλ) + (λ + ν)∂i(μψμ) + (λ + μ)∂i(νψν)]. (70)

Again, the use of orthogonality relations (39) in (70) gives

�1ψ = (μ + ν)[(∂iλ)2ψλλ + (�λ)ψλ] + (λ + ν)[(∂iμ)2ψμμ + (�μ)ψμ]

+ (λ + μ)[(∂iν)2ψνν + (�ν)ψν]. (71)

Similar manipulations for �2 give

�2ψ = μν[(∂iλ)2ψλλ + (�λ)ψλ] + λν[(∂iμ)2ψμμ + (�μ)ψμ]

+ λμ[(∂iν)2ψνν + (�ν)ψν]. (72)

7
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Equations (67), (71) and (72) permit us to write the eigenvalue equations

(H − E)ψ = 0; (H1 − E1)ψ = 0; (H2 − E2)ψ = 0, (73)

in the following form:

Hψ := [(∂iλ)2ψλλ + (�λ)ψλ] + [(∂iμ)2ψμμ + (�μ)ψμ]

+ [(∂iν)2ψνν + (�ν)ψν] + 2m[E − U ] = 0, (74)

H1ψ := (μ + ν)[(∂iλ)2ψλλ + (�λ)ψλ] + (λ + ν)[(∂iμ)2ψμμ + (�μ)ψμ]

+ (λ + μ)[(∂iν)2ψνν + (�ν)ψν] + 2m[E1 − U1] = 0 (75)

and

H2ψ := μν[(∂iλ)2ψλλ + (�λ)ψλ] + λν[(∂iμ)2ψμμ + (�μ)ψμ]

+ λμ[(∂iν)2ψνν + (�ν)ψν] + 2m[E2 − U2] = 0, (76)

respectively. At this point, we can use the explicit forms of the potentials U,U1 and U2

given in (56)–(58). Then, we replace (56), (57) and (58) in (75), (76) and (77), respectively
and observe the relation between the arbitrary function l(λ) and the potentials given by (59).
Taking this into account, a calculation shows that

(λ2H − λH1 + H2)ψ = (λ − μ)(λ − ν)[(∂iλ)2ψλλ + (�λ)ψλ]

+ 2m(λ2E − λE1 + E2 − l(λ))ψ = 0. (77)

Now, the expression � = ∑3
i=1 ∂2

i along relations (29)–(31) give4

�λ = 2
a2b2 + a2c2 + a2b2 + 2λ(a2 + b2 + c2) + 3λ2

(λ − μ)(λ − ν)
. (78)

Finally, using (29)–(31) and (77) in (76), we arrive at

4(λ + a2)(λ + b2)(λ + c2)ψλλ + 2[a2b2 + a2c2 + b2c2 + 2λ(a2 + b2 + c2) + 3λ2]ψλ

+ 2m(λ2E − λE1 + E2 − l(λ))ψ = 0. (79)

If we factorize ψ(λ,μ, ν) = ψ1(λ)ψ2(μ)ψ3(ν), equation (79) gives us ψ1(λ). Similar
equations are obtained by just replacing λ by μ and ν. Each equation is an equation that
deals with one ellipsoidal variable only, either λ,μ or ν. Thus the procedure of separation of
variables in the most general quantum case is completed.

Each of these equations can be written in a more compact form. Let us introduce the
following functions that are inverse of each other, t (λ) and λ(t) with λ(t (λ)) = λ. The
function λ(t) is defined by means of the following condition:

λ′(t) = 2
√

(λ + a2)(λ + b2)(λ + c2), (80)

so that

t (λ) =
∫ λ

0

dx

2
√

(x + a2)(x + b2)(x + c2)
, (81)

so that λ(t) could be expressed via the Weiersstrass function.

4 There are similar expressions for �μ and �ν which are respectively given by

�μ = 2
a2b2 + a2c2 + a2b2 + 2μ(a2 + b2 + c2) + 3μ2

(μ − ν)(μ − λ)

and

�ν = 2
a2b2 + a2c2 + a2b2 + 2ν(a2 + b2 + c2) + 3ν2

(ν − μ)(ν − λ)
.

8
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Next, we take a function f (λ(t)) and let us calculate its second derivative with respect
to t. We get

df (λ(t))

dt
= λ′(t)

df (λ(t))

dλ
,

d2f (λ(t))

dt2
= (λ′(t))2 d2f (λ(t))

dλ2
+ λ′′(t)

df (λ(t))

dλ

= 4(λ + a2)(λ + b2)(λ + c2)
d2f (λ)

dλ2

+ 2[a2b2 + a2c2 + b2c2 + 2λ(a2 + b2 + c2) + 3λ2]
df (λ)

dλ
. (82)

We can use the result of (82) in (79) and we finally obtain

d2ψ1(λ(t))

dt2
+ 2m[λ2(t)E − λ(t)E1 + E2 − l(λ(t))]ψ1(λ(t)) = 0. (83)

Then, the problem is solved if we can solve this differential equation. Similar equations give
ψ2 and ψ3 replacing in (83) λ by μ and ν respectively and l(λ) by m(μ) and n(ν) respectively.

5. Discussion

We would like to search for solutions for equation (83). First, we fix our attention in
equation (80) and make the following change in the unknown function:

�(t) := λ(t) − a2 + b2 + c2

3
, (84)

so that (80) becomes

�′(t) = 2
√

(�(t) − e3)(�(t) − e2)(�(t) − e1), (85)

where

e1 = a2 + b2 + c2

3
− c2, e2 = a2 + b2 + c2

3
− b2, e3 = a2 + b2 + c2

3
− a2.

Note that e1 + e2 + e3 = 0. Then, the general solution of the differential equation (85) is given
by [2]

�(t) = ℘(t + α), (86)

where ℘ is the Weierstrass function [9] and α is an arbitrary integration constant. Thus,

λ(t) = ℘(t + α) +
a2 + b2 + c2

3
. (87)

At this point, it is convenient to recall that the Weierstrass function is two-periodic with periods
2ω1 and 2ω3 (following the notation in [10]). Then, if we choose α = ω3, we obtain [10]

℘(t + ω3) = − 1
3 (1 + k2) + k2 sn2 t, (88)

where

k2 = 1
2 (c2 + a2 − 2b2 + 1) (89)

and sn t is the Jacobi elliptic function with modulus k. Then, one choice for λ(t) is the
following:

λ(t) = h + k2 sn2 t, with h = − 1
2 (a2 + b2 + 1). (90)

Next, we insert (90) into (83). Then, we have to make a choice for the arbitrary function l(λ(t)).
The point is that (83) is intractable unless that l(λ) is quadratic in λ, i.e., l(λ) = αλ2 + βλ + γ ,
being α, β and γ constants. In this case, equation (83) becomes{

d2

dt2
+ A + Bk2 sn2 t + Ck4 sn4 t

}
ψ1(λ(t)) = 0, (91)

9
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where

A = 2m[h2(E − α) − h(E1 + β) + γ + E2]

B = 2m[2h(E − α) − −(E1 + β)] (92)

C = 2m(E − α).

Equation (91) is known as the ellipsoidal wave equation [11]. Solutions of this equation are
given in [11, 12] and are of the form

(snp t)(cnq t)(dnr t)F ( sn2 t), p, q, r = 0, 1, (93)

where sn t, cn t and dn t are the Jacobi elliptic functions and F(−) is a convergent power series
in its argument [11, 12]. There are, however, some simpler solutions. For instance, if we
choose l(λ) = Eλ2 − E1λ, we have[

d2

dt2
+ 2mE2

]
ψ1(λ(t)) = 0 �⇒ ψ1(λ(t)) = A1 ei

√
2mE2t + A2 e−i

√
2mE2t . (94)

For E = α, we have C = 0 and then{
d2

dt2
+ A + Bk2 sn2 t

}
ψ1(λ(t)) = 0. (95)

Equation (95) is the Lamé wave equation. Its solutions have been well studied [11, 12].
For the free particle, l(λ) ≡ 0 and therefore α = β = γ = 0. In this case, the form of
equation (83) does not change, as we can see from (92).

6. Concluding remarks

Separation of variables and complete integrability of a three-dimensional system with
Hamiltonian given by H = p2/2m + U(x) can be achieved in classical mechanics using
ellipsoidal coordinates, provided that the potential U(x) belongs to a certain class. The two
remainder constants of motion are assumed to have a Hamiltonian structure. We find that their
corresponding potentials have to have a similar structure to U(x).

By canonical quantization, we can extend this result to quantum mechanics. However,
the three one-dimensional resulting wave equations have the structure of ellipsoidal wave
equations, which is one of the most intractable (in the sense of obtaining analytical solutions)
types of wave equation, even for the free particle case.
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